18 research outputs found

    Adaptive Tesselation CMAC

    Full text link
    An ndaptive tessellation variant of the CMAC architecture is introduced. Adaptive tessellation is an error-based scheme for distributing input representations. Simulations show that the new network outperforms the original CMAC at a vnriety of learning tasks, including learning the inverse kinematics of a two-link arm.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100); National Science Foundation (IRI-90-00530); Boston University Presidential Graduate Fellowshi

    Global Motion Configuration Can Override Local Motion Contrast

    Full text link
    How is the perceived direction of motion of a target affected by the motion of multiple surrounding regions? Observers viewed displays consisting of three nested regions, a circular target region surrounded by two concentric annuli, each containing coherently moving dots. The observers' task was to estimate the direction of motion of the dots in the central region. By itself, motion in either annulus can alter this estimate, producing a contrast effect whereby the perceived direction of the centre is biased away from the direction of motion of the annulus. In combination, the outer annulus dominated the inner in its effect on the target's motion. This result suggests that local operators, such as antagonistic centre-surround mechanisms for motion direction, are in themselves insufficient to explain relative motion effects.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N00014-94-J-0597); National Science Foundation (IRI- 90-00530); Air Force Office of Scientific Research (F49620-92-J-0334

    Neural Dynamics of Motion Processing and Speed Discrimination

    Full text link
    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-tuned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the Vl→7 MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-94-1-0597, N00014-95-1-0409); Air Force Office of Scientific Research (F49620-92-J-0499); National Science Foundation (IRI-90-00530

    Neural Dynamics of Motion Grouping: From Aperture Ambiguity to Object Speed and Direction

    Full text link
    A neural network model of visual motion perception and speed discrimination is developed to simulate data concerning the conditions under which components of moving stimuli cohere or not into a global direction of motion, as in barberpole and plaid patterns (both Type 1 and Type 2). The model also simulates how the perceived speed of lines moving in a prescribed direction depends upon their orientation, length, duration, and contrast. Motion direction and speed both emerge as part of an interactive motion grouping or segmentation process. The model proposes a solution to the global aperture problem by showing how information from feature tracking points, namely locations from which unambiguous motion directions can be computed, can propagate to ambiguous motion direction points, and capture the motion signals there. The model does this without computing intersections of constraints or parallel Fourier and non-Fourier pathways. Instead, the model uses orientationally-unselective cell responses to activate directionally-tuned transient cells. These transient cells, in turn, activate spatially short-range filters and competitive mechanisms over multiple spatial scales to generate speed-tuned and directionally-tuned cells. Spatially long-range filters and top-down feedback from grouping cells are then used to track motion of featural points and to select and propagate correct motion directions to ambiguous motion points. Top-down grouping can also prime the system to attend a particular motion direction. The model hereby links low-level automatic motion processing with attention-based motion processing. Homologs of model mechanisms have been used in models of other brain systems to simulate data about visual grouping, figure-ground separation, and speech perception. Earlier versions of the model have simulated data about short-range and long-range apparent motion, second-order motion, and the effects of parvocellular and magnocellular LGN lesions on motion perception.Office of Naval Research (N00014-920J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-91-J-0597); Air Force Office of Scientific Research (F4620-92-J-0225, F49620-92-J-0499); National Science Foundation (IRI-90-00530

    A Neural Model of Biased Oscillations in Aplysia Head-Waving Behavior

    Full text link
    A long-term bias in the exploratory head-waving behavior of Aplysia can be induced using bright lights as an aversive stimulus: coupling onset of the lights with head movements to one side results in a bias away from that side (Cook & Carew, 1986). This bias has been interpreted as a form of operant conditioning, and has previously been simulated with a neural network model based on associative synaptic facilitation (Raymond, Baxter, Buonomano, & Byrne, 1992). In this article we simulate the head-waving behavior using a recurrent gated dipole, a nonlinear dynamical neural model that has previously been used to explain various data including oscillatory behavior in biological pacemakers. Within the recurrent gated dipole, two channels operate antagonistically to generate oscillations, which drive the side-to-side head waving. The frequency of oscillations depends on transmitter mobilization dynamics, which exhibit both short- and long-term adaptation. We assume that light onset results in a nonspecific increase in arousal to both channels of the dipole. Repeated pairing of arousal increments with activation of one channel (the "reinforced" channel) of the dipole leads to a bias in transmitter dynamics, which causes the oscillation to last a shorter time on the reinforced channel than on the non-reinforced channel. Our model provides a parsimonious explanation of the observed behavior, and it avoids some of the unexpected results obtained with the Raymond et al. model. In addition, our model makes predictions concerning the rate of onset and extinction of the biases, and it suggests new lines of experimentation to test the nature of the head-waving behavior.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N0014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); A.P. Sloan Foundation (BR-3122

    Neural Dynamics of Motion Processing and Speed Discrimination

    Get PDF
    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-tuned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1® MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that h..

    Pannexin 2 protein expression is not restricted to the CNS

    Get PDF
    Pannexins are proteins homologous to the invertebrate gap junction proteins called innexins and are traditionally described as transmembrane channels connecting the intracellular and extracellular compartments. Three distinct pannexin paralogs (Panx1, Panx2 and Panx3) have been identified in vertebrates but previous reports on pannexin expression and functionality focused primarily on Panx1 and Panx3 proteins. Several gene expression studies reported that Panx2 transcript is largely restricted to the central nervous system (CNS) hence suggesting that Panx2 might serve an important role in the CNS. However, the lack of suitable antibodies prevented the creation of a comprehensive map of Panx2 protein expression and Panx2 protein localization profile is currently mostly inferred from the distribution of its transcript. In this study, we characterized novel commercial monoclonal antibodies and surveyed Panx2 expression and distribution at the mRNA and protein level by real-time qPCR, Western blotting and immunofluorescence. Panx2 protein levels were readily detected in every tissue examined, even when transcriptional analysis predicted very low Panx2 protein expression. Furthermore, our results indicate that Panx2 transcriptional activity is a poor predictor of Panx2 protein abundance and does not correlate with Panx2 protein levels. Despite showing disproportionately high transcript levels, the CNS expressed less Panx2 protein than any other tissues analyzed. Additionally, we showed that Panx2 protein does not localize at the plasma membrane like other gap junction proteins but remains confined within cytoplasmic compartments. Overall, our results demonstrate that the endogenous expression of Panx2 protein is not restricted to the CNS and is more ubiquitous than initially predicted
    corecore